New Prenylhydroquinone Glycosides from Phagnalon rupestre

Luis Góngora, Rosa-María Giner, Salvador Máñez, María del Carmen Recio, and José-Luis Ríos*

Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Avda. Vicent Andrés Estellés s/n, 46100-Burjassot, València, Spain

Received March 29, 2001

Three new hydroquinone glycosides were isolated from the MeOH extract of the aerial parts of *Phagnalon rupestre*. Their structures were elucidated as $1 - O - \beta$ -glucopyranosyl-1,4-dihydroxy-2-(3',3'-dimethylallyl)-benzene (**1**), $1 - O - \beta$ -glucopyranosyl-1,4-dihydroxy-2-(3'-hydroxymethyl-3'-methylallyl)benzene (**2**), and $1 - O - (4'' - O - caffeoyl) - \beta$ -glucopyranosyl-1,4-dihydroxy-2-(3',3'-dimethylallyl)benzene (**3**) by spectroscopic methods.

The genus *Phagnalon* (Asteraceae) is represented by 30 Eurasiatic species, six of which are typical of the European Mediterranean region.^{1,2} The phytochemistry of *Phagnalon rupestre* is not well known, although some studies have revealed the presence of flavonoids such as apigenin, apigenin 7-glucoside and luteonin,³ quinones,⁴ fatty substances such as *n*-octadecane, trimethyldodecane, and other *n*-paraffin components, and essential oil constituents such as α -terpineol, thymol, and hexahydrofarnesyl acetone.^{5,6}

The bark of *Phagnalon rupestre* is widely used to induce deliberate burns for the healing of various ailments,⁷ and some extracts of this plant have been shown to possess antimicrobial properties.⁸ On the other hand, the naturally occurring quinones present in *Phagnalon* sp. can act as contact allergens.⁴

Air-dried and powdered aerial parts of *P. rupestre* were macerated with MeOH, and the resulting extract was liquid–liquid partitioned with solvents of increasing polarity. After gel filtration followed by vacuum liquid chromatography (VLC) and low-pressure liquid chromatography (VLC) and low-pressure liquid chromatography three compounds (**1**–**3**) were isolated from the ethyl acetate fraction. The least polar of them, compound **1**, was analyzed for C₁₇H₂₄O₇ (FABMS) and showed ions at *m*/*z* 340 [M]⁺ and *m*/*z* 363 corresponding to [M + Na]⁺. The ¹H NMR spectrum displayed the signal pattern typical of an alky-lhydroquinone.⁹ Three aromatic protons (H-3, H-5, and H-6) exhibited an ABX system (δ 6.55, 6.52, and 6.98, respectively), one oleofinic proton at δ 5.30, two aliphatic protons at δ 3.43, and two methyl groups at δ 1.70 and 1.73 arising

from a prenyl residue. An anomeric proton at δ 4.71 and two double doublets at 3.66 and 3.85 indicated the presence of a β -glucopyranose residue (see Table 1). This was confirmed by analysis of the ¹³C NMR spectrum, which exhibited 17 carbon signals, 11 corresponding to the aglycone and six to the sugar moiety. A NOE experiment showed correlations between H-1' and H-1" and between H-6 and H-1", thus making it possible to confirm the locations of the prenyl and sugar residues. The structure of **3** was elucidated to be 1-*O*- β -glucopyranosyl-1,4-dihydroxy-2-(3',3'-dimethylallyl)benzene. Full assignments of ¹H and ¹³C NMR signals were accomplished using NOE experiments (Tables 1 and 2).

Compound 2 ($C_{17}H_{24}O_8$) possessed one more oxygen than compound 1. The ^{13}C NMR spectrum of 2 was similar to that of 1, with the only difference arising from the appearance of a $-CH_2OH$ carbon signal at δ 68.8 in 2 together with the absence of one of the two signals corresponding to a methyl group in 1. This oxymethylene group was placed at C-4', as shown by the upfield shift of C-5' (δ 13.9) and the presence of a carbinolic proton signal at δ 3.85 (Tables 1 and 2). Thus 2 was identified as 1-O- β -glucopyranosyl-1,4-dihydroxy-2-(3'-hydroxymethyl-3'-methylallyl)benzene.

Compound 3 gave an ion in the FABMS at m/z 525 $[M + Na]^+$, suggesting the molecular formula $C_{26}H_{30}O_{10}$. An intensive fragment ion at m/z 325 indicated the loss of a caffeoyl moiety. The ¹H spectrum showed an ABX pattern proton signal at δ 7.05, 6.76, and 6.93 and two olefinic protons at δ 6.27 and 7.57. The ¹³C NMR spectrum showed one carbonilic signal at δ 168.5, two olefinic carbons at δ 114.6 and 147.6, and six aromatic carbons, two of them hydroxylated (δ 149.6 and 146.7). These signals indicated one caffeoyl moiety. Comparison of the sugar signals in the ¹³C NMR spectrum of **3** with data on compounds **1** and **2** allowed identification of a 4"-O substitution on the glucose residue. The C-4 signal of the sugar at δ 72.2 was 0.8 ppm downfield from that of compound 1, and C-3 and C-5 were shifted upfield (Tables 1 and 2). The structure of 3 was identified as 1-O-(4"-O-caffeoyl)-\beta-glucopyranosyl-4-hydroxy-2-(3',3'-dimethylallyl)benzene.

To our knowledge, this is the first report of the occurrence of the simplest dimethylallyl-hydroquinone in glycosidic form. The sugar moiety appears to stabilize the molecule, indirectly preventing dehydrogenation to give the analogue prenyl-benzoquinone, which had previously been identified in the plant. Closely related to *Phagnalon* phenolics are some biologically active hydroquinone deriva-

 $^{^{*}}$ To whom correspondence should be addressed. Tel and fax: +34 96 3864973. E-mail: riosjl@uv.es.

Table 1. ¹H NMR Spectral Data (δ) of Compounds **1**, **2**, and **3** (CD₃OD; 400 MHz)^{*a*}

Н	1	2	3
3	6.55 (1H, d, J = 2.8)	6.47 (1H, d, J=2.8)	6.56 (1H, d, J = 2.7)
5	6.52 (1H, dd, $J = 8.6, 2.8$)	6.43 (1H, dd, $J = 8.8, 2.8$)	6.52 (1H, dd, $J = b$, 3)
6	6.98 (1H, d, $J = 8.4$)	6.88 (1H, d, $J = 8.4$)	7.01 (1H, d, $J = 8.4$)
1′	3.43 (2H, d, $J = 7.6$)	3.32 (2H, d, J = 7.6)	3.57 (2H, d, $J = 7.5$)
2′	5.30 (1H, t, $J = 7.6$)	5.47 (1H, t, $J = 7.2$)	5.30 (1H, t, $J = 7.5$)
4'	1.70 (3H, s)	1.64 (3H, s)	1.70 (3H, s)
5′	1.73 (3H, s)	3.85 (2H, s)	1.72 (3H, s)
1″	4.71 (1H, d, $J = 7.6$)	4.64 (1H, d, $J = 7.2$)	4.79 (1H, d, J = 7.5)
2", 3"	3.32-3.37 (2H, m)	3.24-3.36 (4H, m)	3.31-3.37 (2H, m)
4″	3.29 (1H, m)	3.24-3.36 (4H, m)	3.30 (1H, m)
5″	3.40 (1H, m)	3.24-3.36 (4H, m)	3.53 (1H, m)
6″	$3.66 (1H_a, dd, J = 12, 4.8)$	$3.57 (1H_a, dd, J = 11.6, 5.2)$	3.62-3.75 (2H, m)
	3.85 (1H _b , dd, $J = 11.4$, 2)	$3.75 (1H_b, dd, J = 11.6, 1.6)$	
2′′′			6.27 (1H, d, J = 15.9)
3‴			7.57 (1H, d, $J = 15.9$)
5‴			7.05 (1H, d, $J = 1.9$)
8‴			6.76 (1H, d, $J = 7.8$)
9‴			6.93 (1H, broad doublet)

^a Coupling constants (Hz) are in parentheses. ^b Overlapped.

Table 2. ¹³C NMR Spectral Data (δ) of Compounds 1, 2, and 3 (CD₃OD; 100 MHz)

С	1	2	3
1	150.0	150.1	150.0
2	133.9	133.4	134.0
3	113.8	114.0	113.8
4	153.5	153.6	153.6
5	116.8	118.4	116.8
6	118.3	117.0	118.5
1′	29.1	29.0	29.1
2'	123.9	125.2	123.9
3′	133.2	136.6	133.2
4'	17.9	68.8	17.9
5'	25.9	13.9	25.9
1″	103.9	103.9	103.9
2″	75.0	75.0	75.2
3″	78.1	78.1	75.9
4‴	71.4	71.3	72.2
5″	77.9	77.9	76.0
6″	62.5	62.5	62.2
1‴			168.5
2‴			114.6
3‴			147.6
4‴			127.6
5‴			115.1
6‴			149.6
7‴			146.7
8‴			116.4
9‴			123.0

tives bearing polyisoprene, often hydroxylated, chains of variable length that have been reported from marine sponges, e.g., *Ircinia* sp.¹⁰ Avarol from *Disidea avara*¹¹ and siphonodictyal from *Siphonodyction coralliphagum*¹² possess a hydroquinone nucleus bound to a bicyclic terpenoid moiety. Other related compounds such as the heptadecenyl-hydroquinones from *Tapirira guaianensis* (Anacardiaceae)⁹ and glaziovianol from *Auxemma glazioviana* (Boraginaceae)¹³ have been identified in higher plants.

Experimental Section

General Experimental Procedures. NMR spectra were run on a 400 MHz (δ , ppm) Brucker AMX instrument in CD₃OD. FABMS were carried out in a VG Auto Spec (Fisons). Optical rotations were measured with a Perkin-Elmer 241 polarimeter. UV spectra were obtained on a Shimadzu UV-2101 PC spectrophotometer. IR spectra were obtained using KBr disks on a Mattson Satellite FTIR spectrophotometer. Analytical TLC was carried out on Merck Si gel F_{254} and RP-18 aluminum sheets visualized with 1% sulfuric acid-anisaldehyde.

Plant Material. The flowering aerial parts of *Phagnalon rupestre* (L.) DC. were collected in Sierra de Corbera (Valencia, Spain). A voucher specimen (DF7) of the plant is kept in the Department of Pharmacology, University of Valencia.

Extraction and Isolation. The air-dried, powdered aerial part of *P. rupestre* (660 g) was extracted by stirring with MeOH $(4 \times 2 L)$ for 24 h at room temperature. The solvent was removed under reduced pressure. The methanolic extract (100.0 g) was suspended in H₂O and fractionated with EtOAc to obtain the extract (17.8 g). This EtOAc extract was filtered over Sephadex LH-20 with MeOH to yield 12 fractions. The fourth fraction (3.8 g) was subjected to VLC on a Si gel 60 (Merck) column and eluted with CH₂Cl₂-MeOH mixtures and MeOH. The fraction eluted with CH₂Cl₂-MeOH (9:1) (fraction IV-6) was rechromatographed on a Lobar B column of RP-18 (Merck) with MeOH-H₂O (6:4), and 1 (1.2 g) was obtained from the fifth fraction. Fraction IV-7 was chromatographed using Si gel 60 with CH₂Cl₂-MeOH (9:1) to yield 2 (8 mg). Fractionation of the sixth fraction (0.9 g) over Si gel with CH₂Cl₂-MeOH mixtures followed by purification on a Lobar B column of Si gel (Merck) with CH₂Cl₂-MeOH (95:5) gave 3 (50 mg).

1-*O*-β-Glucopyranosyl-1,4-dihydroxy-2-(3',3'-dimethylallyl)benzene (1): amorphous powder, $[\alpha]_D -58^\circ$ (MeOH; *c* 0.1); UV λ_{max} (MeOH) 289, 232 nm, (+NaOH) 304, 243 nm; IR ν_{max} cm⁻¹: 3400, 2973, 2928, 2907, 1644, 1606; ¹H and ¹³C NMR, Tables 1 and 2; FABMS *m*/*z* [M + Na]⁺ 363, [M]⁺ 340, [glucopyranoside]⁺ 180.

1-*O*-β-Glucopyranosyl-1,4-dihydroxy-2-(3'-hydroxymethyl-3'-methylallyl)benzene (2): amorphous powder, $[\alpha]_D$ -34° (MeOH; *c* 0.1); UV λ_{max} (MeOH) 293, 231 nm, (+NaOH) 306, 226; IR ν_{max} cm⁻¹: 3400, 2926, 2856, 1731, 1637; ¹H and ¹³C NMR, Tables 1 and 2; FABMS *m*/*z* [M + Na]⁺ 379, [M]⁺ 356.

1-O-(4"-O-Caffeoyl)-β-glucopyranosyl-1,4-dihydroxy-2-(**3',3'-dimethylallyl)benzene** (**3**): amorphous powder, $[\alpha]_D$ -26° (MeOH; *c* 0.1); UV λ_{max} (MeOH) 331, 242 nm, (+NaOH) 380, 311, 238 nm; IR ν_{max} cm⁻¹: 3400, 2925, 2856, 1694; ¹H and ¹³C NMR, Tables 1 and 2; FABMS *m*/*z* [M + Na]⁺ 525, [M]⁺ 502, [M - caffeoyl + 2H]⁺ 325.

Acknowledgment. This work was supported by the Secretaría de Estado de Universidades e Investigación of the Spanish Government (grant PM98-0206). The authors thank Dr. A. Braca (University of Pisa, Italy) for her punctual help on the structural identification.

Notes

- (8) Ali-Shtayeh, M. S.; Yaghmour, R. M.; Faidi, Y. R.; Salem, K.; Al-
- Tutin, T. G.; Heywood, V. H.; Burgess, N. A.; More, D. M.; Valentine, D. H.; Walters, S. M.; Webb, D. A. *Flora Europaea*; Cambridge University: Cambridge, 1976; Vol. 4, p 133.
 Engler A. *Syllabus der Pflanzenfamilien*; Gebrüder Bornträger: Berlin, 1964; Part II, p 489.
 Dolci, M.; Tira, S. *Atti Accad. Sci. Torino, Cl. Sci. Fis., Mater. Nat.* **1982**, *116*, 315-318.
 Washer P. M. Schulz, K. H. Blente Med. **1977**, 22, 297, 202
- (4) Hausen, B. M.; Schulz, K. H. Planta Med. 1977, 32, 287-293.
- (5) Bicchi, C.; Nano, G. M.; Tira, S. Planta Med. 1975, 28, 389-391.
- (6) Bicchi, C.; Frattini, C.; Nano, G. M.; Tira, S. Relata Technol. 1979, 11, 64.
- (7) Friedman, J.; Yaniv, Z.; Dafni, A.; Palewitch, D. J. Ethnopharmacol. **1986**, *16*, 275–287.
- Nuri, M. A. J. Ethnopharmacol. 1998, 60, 265-271. (9) David, J. M.; Chávez, J. P.; Chai, H. B.; Pezzuto, J. M.; Cordell, G.
- A. J. Nat. Prod. 1998, 61, 287-289.
- Gil, B.; Sanz, M. J.; Terencio, M. C.; De Giulio, A.; De Rosa, S.; Alcaraz, M. J.; Payá, M. *Eur. J. Pharmacol.* **1995**, *285*, 281–288.
- (11) Minale, L.; Riccio, R.; Sodano, G. *Tetrahedron Lett.* **1974**, *38*, 3401–3404.
- (12) Killday, K. B.; Wright, A. E.; Jackson, R. H.; Sills, M. A. J. Nat. Prod. **1995**, *58*, 958–960.
- (13) Da Costa, G. M.; de Lemos, T. L. G.; Pessoa, O. D. L.; Monte, F. J. Q.; Braz-Filho, R. J. Nat. Prod. 1999, 62, 1044–1045.

NP010166T